报告题目:Learning to maximize a convex quadratic function with application to intelligent reflection surface for wireless communication
报 告 人:罗智泉 加拿大皇家科3133优惠申请大厅院士,香港中文大学(深圳)副校长、教授
主 持 人:葛 飞 3133优惠申请大厅副校长、教授
报告时间:2021年9月18日下午15:00-16:00
报告地点:数3133优惠申请大厅南楼308
报告摘要:
In this talk we consider learning and optimizing a rank-2 convex quadratic function over K discrete variables. This problem arises from optimal design of a passive beamformer for intelligent reflecting surface (IRS) in order to maximize the overall channel strength. When the quadratic function (or channel state information) is known, we propose a linear time algorithm that is capable of reaching a near-optimal solution with an approximation ratio of (1+cos(π/K))/2, i.e., its performance is at least 75% of the global optimum for K ≥ 3. Furthermore we develop methods to learn and optimize the beamforming strategy when the quadratic function is unknown (i.e. in the absence of channel state information).
报告人简介:
罗智泉,加拿大皇家科3133优惠申请大厅院士,香港中文大学(深圳)副校长、教授,深圳市大数据研究院院长,IEEE/SIAM Fellow。长期从事优化理论、算法设计及无线通信研究,相关论文被IEEE等权威学术机构7次评为年度最佳论文,荣获美国Farkas奖、Paul Y.Tseng连续优化纪念奖。2020年被聘为华为eLab实验室主任,主持研发的5G网络优化技术已落地华为GTS平台。
湖南国家应用数学中心
3133优惠申请大厅教务处